

PRACTICE PAPER TARGET JEE CHEMISTRY STATES OF MATTER SOLUTION 26 AUGUST 2019

- 1. D
- 2. (a) m. wt. of $NH_3 = 17$; m.wt. of $N_2 = 28$ m.wt. of $CO_2 = 44$; m.wt. of $O_2 = 32$ beacuse NH_3 is lightest gas out of these gases

$$r \propto \frac{1}{\sqrt{\text{Molecular Weight}}}$$

- 3.
- 4 C

5. (a)
$$\frac{r_g}{r_{He}} = \sqrt{\frac{M_{He}}{M_g}} \therefore M_g = M_{He} \cdot \frac{r^2_{He}}{r^2_g} = \frac{4}{(1.4)^2} = \frac{4}{1.96} = 2$$

$$\left[Note : 1.4 = \sqrt{2} \right]$$

6. (a)
$$r_g = \frac{1}{5} . r_{H_2}$$

$$\frac{M_g}{M_{H_2}} = \left[\frac{r_{H_2}}{r_g} \right]^2 = (5)^2 = 25 ; M_g = 2 \times 25 = 50$$

7. (b)
$$r_g = \frac{1}{6} r_{H_2}$$
; $M_g = M_{H_2} \left[\frac{r_{H_2}}{r_g} \right]^2 = 2 \times 6^2 = 2 \times 36 = 72$

8. (a)
$$M_1 = 64$$
; $r_2 = 2r_1$
 $M_2 = M_1 \left[\frac{r_1}{r_2} \right]^2 = 64 \times \frac{1}{4} = 16$

9. (b)
$$r_O = r_H \sqrt{\frac{d_H}{d_O}} = 1\sqrt{\frac{0.09}{1.44}} = \sqrt{\frac{1}{16}} = \frac{1}{4}$$

10. (a)
$$r_a = 5r_b$$
; $\frac{d_a}{d_b} = \left[\frac{r_b}{r_a}\right]^2 = \left(\frac{1}{5}\right)^2 = \frac{1}{25}$

11. (b)
$$\frac{d_1}{d_2} = \frac{1}{16}$$
; $\frac{r_1}{r_2} = \sqrt{\frac{d_2}{d_1}} = \sqrt{16} = \frac{4}{1}$

12. (d)
$$\frac{D_A}{D_B} = \sqrt{\frac{\rho_B}{\rho_A}} = \left[\frac{\rho_B}{\rho_A}\right]^{\frac{1}{2}}; \quad \therefore D_A = D_B \left(\frac{\rho_B}{\rho_A}\right)^{\frac{1}{2}}$$

- **13.** (c) Gases may be separated by this process because of different rates of diffusion due to difference in their densities.
- **14.** (b) NH_4CI ring will first formed near the HCI bottle because rate of diffusion of NH_3 is more than that of HCI because $M_{NH_3}: M_{HCI} = 17:36.5$). SO NH_3 will reach first to the HCI bottle & will react there with HCI to form NH_4CI ring
- **15.** (d) Because both *NO* and C_2H_6 have same molecular weights $[M_{NO} = M_{C_2H_6} = 30]$ and rate of diffusion ∞ molecular weight.
- 16. B

17. (d)
$$\frac{M_A}{M_B} = \left(\frac{r_B}{r_A}\right)^2 :: r_A = 2r_B :: \frac{r_B}{r_A} = \frac{1}{2} = \frac{1}{(2)^2} = \frac{1}{4} = .25$$

18. (a)
$$r_H = \frac{2gm}{10 \text{ min}}$$
 if $r_O = \frac{xgm}{10 \text{ min}}$ $r_O = r_H \sqrt{\frac{M_{H_2}}{M_{O_2}}} = \frac{2}{10} \sqrt{\frac{2}{32}}$ $\frac{x}{10} = \frac{2}{10 \times 4} = \frac{1}{2} gm. = .5 gm$

19. (a)
$$r_{CH_4} = 2r_g$$

$$M_g = M_{CH_4} \left(\frac{r_{CH_4}}{r_g} \right)^2 = 16 \times 2^2 = 64$$

20. (b)
$$r \propto \frac{1}{\sqrt{M}}$$

20. (b)
$$r \propto \frac{1}{\sqrt{M}}$$
 $\therefore r = \frac{Volume \ effused}{time \ taken} = \frac{V}{t}$

$$\frac{V}{t} \propto \frac{1}{\sqrt{M}}$$
 : for same volumes (V constant)

$$t \propto \sqrt{M}$$
 : $\frac{t_1}{t_2} = \sqrt{\frac{M_1}{M_2}}$

$$t_{He} = t_{H_2} \sqrt{\frac{M_{He}}{M_{H_2}}} = 5\sqrt{\frac{4}{2}} = 5\sqrt{2} \text{ s.}$$

$$t_{O_2} = t = 5\sqrt{\frac{32}{2}} = 20s$$

$$t_{CO} = 5\sqrt{\frac{28}{2}} = 5\sqrt{14}s$$
; $t_{CO_2} = 5\sqrt{\frac{44}{2}} = 5\sqrt{22}s$

21. (c)
$$\frac{r_{N_2}}{r_{SO_2}} = \frac{V_{rms}N_2}{V_{rms}SO_2} = \sqrt{\frac{T_{N_2}}{T_{SO_2}} \cdot \frac{M_{SO_2}}{M_{N_2}}} = \sqrt{\frac{T_{N_2}}{323} \times \frac{64}{28}}$$

$$1.625 = \sqrt{\frac{T_{N_2}}{323} \cdot \frac{16}{7}}$$

$$T_{N_2} = \frac{(1.625)^2 \times 323 \times 7}{16} = 373^{\circ} K$$

22. (a)
$$C + H_2O \rightarrow CO_{(g)} + H_{2(g)}$$

 $12gm \rightarrow 1mol + 1mol$

12 gm C produces 2mole of gases (1mole CO & 1 mole of H₂)

∴ 48 gm C may produce
$$\frac{48}{12} \times 2 = 4 \times 2 = 8$$
 mole

$$= 22.4 \times 8 L \text{ gases} = 179.2 L \text{ gas.}$$

23. (d) Molecular weight =
$$\frac{mRT}{PV} = \frac{4.4 \times .082 \times 273}{1 \times 2.24} = 44$$

So the gas should be CO₂

24. (c)
$$PV = nRT$$

$$P = \frac{n}{V}RT$$
 : $\frac{n}{V} = C \Rightarrow P = CRT$

$$T = \frac{P}{CR} = \frac{1}{1 \times .821} = 12^{\circ} K$$

25. (a)
$$6.02 \times 10^{22}$$
 molecules of each N_2 , O_2 and H_2

$$= \frac{6.02 \times 10^{22}}{6.02 \times 10^{23}} \text{ moles of each}$$

Weight of mixture = weight of 0.1 mole N_2 + weight of 0.1 mole H_2 + weight of 0.1 mole of O_2

$$= (28 \times 0.1) + (2 \times 0.1) + (32 \times 0.1) = 6.2gm$$

26. (c)
$$M.wt$$
 of $CO_2 = 12 + 16 + 16 = 44$

Volume of 44 gm of CO_2 at NTP = 22.4 litre

1 gm of
$$CO_2$$
 at NTP = $\frac{22.4}{44}$

$$\Rightarrow \frac{22.4}{44} \times 4.4$$
 litre = 2.24 litre

28. (b) No. of moles of
$$CO_2$$
 present in 200 ml solution

= molarity × Volume (in It.) =
$$0.1 \times \frac{200}{1000} = .02$$

Volume of 0.02 mole of $CO_2 = 22.4 \times .02 lt. = 0.448 lit.$

29. (b) Molecular weight = $V.d. \times 2 = 11.2 \times 2 = 22.4$ Volume of 22.4 gm Substance of NTP = 22.4 litre

1 gm substance at NTP =
$$\frac{22.4}{22.4}$$
 litre

11.2 gm substance of NTP = 11.2 litre

30. (b)
$$\frac{M. wt. of O_2}{M. wt. of SO_2} \Rightarrow \frac{M_1}{M_2} \Rightarrow \frac{32}{64} = \frac{1}{2}$$

The weight of oxygen will be $\frac{1}{2}$ that of SO_2

31. (b) For HI has the least volume because of greater molecular weight $V \propto \frac{1}{M}$

32. D

33. (c) Since no. of molecules is halved so pressure should also be halved.

34. (c) H_2 will be filled first because of lower molecular weight

35. (a) Mixture of SO_2 and CI_2 are reacted chemically and forms SO_2CI_2 . That is why mixture of these gases is not applicable for Dalton's law.

$$P_1V_1 = P_2V_2 \implies P_1 \times 60 = 720 \times 100$$

$$P_1 = \frac{720 \times 100}{60} = 1200mm$$

37. (a) Rate of diffusion $\propto \frac{1}{\sqrt{\text{Molecular Mass}}}$

that is why H_2 gas diffuse first

38. (a) Solution level will rise, due to absorption of CO_2 by sodium hydroxide.

$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$

39. (c)
$$CaCo_3 \xrightarrow{} \hat{A}CaO + CO_2 \uparrow CaO + CO_2 \uparrow CaO$$

$$\therefore$$
 At S.T.P. 100*g CaCO*₃ produce= 22.4 *litre* of CO_2

$$\therefore$$
 At S.T.P. 1g CaCO₃ produce = $\frac{22.4}{100}$ = .224 litre of CO₂

40. (c) The density of gas =
$$\frac{Molecular \ wt. \ Of \ Metal}{Volume} = \frac{45}{22.4}$$

 $= 2gmlitre^{-1}$

41. (a) $M_1 = 32g$ for O_2 , $M_2 = 2g$ for H_2

$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$$
; $\frac{r_1}{r_2} = \sqrt{\frac{2}{32}} = \sqrt{\frac{1}{16}} = \frac{1}{4}$

42. (c) In 22.41 of H_2 maximum number of molecules = 6.023×10^{23}

In 11 of
$$H_2$$
 maximum number of molecules = $\frac{6.023 \times 10^{23}}{22.4}$

In 15*I* of H_2 maximum number of molecules = $\frac{6.023 \times 10^{23}}{22.4} \times 15 = 4.03 \times 10^{23}$ molecules.

43. (a) 22.41 O_2 at S.T.P. = 32gm of O_2

11
$$O_2$$
 at S.T.P. = $\frac{32}{22.4}$ = 1.43gm of O_2

44. B

45 (a) We know that molecular mass of hydrogen $M_1 = 2$ and that of helium $M_2 = 4$, we also know that Graham's law of diffusion

$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}} = \sqrt{\frac{4}{2}} = \sqrt{2} = 1.4$$
; $r_1 = 1.4$ m

46. (a)
$$\frac{r_A}{r_H} = \sqrt{\frac{M_H}{M_A}} = \frac{r}{6r} = \sqrt{\frac{2}{M_A}}$$

$$M_{\Delta} = 6 \times 6 \times 2 = 720$$

47. (d) Given that:

$$V_1 = 100 \, ml$$
, $P_1 = 720 \, mm$, $V_2 = 84 \, ml$, $P_2 = ?$

By using $P_1V_1 = P_2V_2$ [According to the Boyle's law]

$$P_2 = \frac{P_1 V_1}{V_2} = \frac{720 \times 100}{84} = 857.142$$

Hence, $P_2 = 857.14 mm$

48. (b) According to gas law

$$PV = nRT, \ n = \frac{PV}{RT}$$

$$\frac{P_1V_1}{RT}$$

$$\frac{n_A}{n_B} = \frac{\frac{P_1 V_1}{R T_1}}{\frac{P_2 V_2}{R T_2}} : \frac{n_A}{n_B} = \frac{P_1 V_1}{T_1} \times \frac{T_2}{P_2 V_2}$$

$$\frac{n_A}{n_B} = \frac{2P \times 2V}{2T} \times \frac{T}{PV}; \quad \frac{n_A}{n_B} = \frac{2}{1}$$

49. (e) No. of molecules = $2 \times V.d$

$$2 \times 38.3 = 76.3$$

$$wt. of NO_2 = x$$

So that *wt.* of $N_2O_4 = 100 - x$

Hence,
$$\frac{x}{46} + \frac{100 - x}{92} = \frac{100}{76.6} = \frac{2x + 100 - x}{92} = \frac{100}{76.6}$$

$$x = 20.10$$
, no. of mole. of $NO_2 = \frac{20.10}{46} = 0.437$

50. (a) Given that

 $P_1 = 76cm$ of Hg (Initial pressure at N.T.P.)

$$P_2 = ?$$
, $V_1 = 5$ litre, $V_2 = 30 + 5 = 35$ litres

According to Boyle's law

$$P_1V_1 = P_2V_2$$
; $76 \times 5 = P_2 \times 35$

$$P_2 = \frac{76 \times 5}{35} \Rightarrow P_2 = 10.8cm \text{ of } Hg$$